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Atopic dermatitis is a complex inflammatory cutaneous disor-
der characterized by immune-mediated inflammation and epi-
dermal barrier dysfunction. Arising from a complex interplay 

between environmental and genetic factors, the definitive etiology of 
AD is perplexing and controversial. Advances in molecular medicine 
are radically transforming our understanding of AD pathogenesis. 
Increasing knowledge on the pathogenesis of AD results in novel 
therapeutic targets and pathways. This article details the pathogenesis 
section of the Curriculum United for Better Eczema Care (CUBE-C), 

facilitating primary care and sub-specialist education on the scientific 
advances driving recent AD therapeutic innovations.

Genetics 
Numerous clinical investigations have highlighted a strong genetic 
susceptibility for AD. Concordance in monozygotic twin studies 
and case reports describing the transfer and subsequent develop-
ment of AD following bone marrow transplantation highly sug-
gested a genetic basis for AD prior to classification of the human 
genome.1 Groundbreaking discoveries in molecular medicine 
worldwide have positively identified 46 genes linked to AD.2 Im-
plicated genes encode regulatory proteins involved in the termi-
nal differentiation of keratinocytes, as well as innate and adaptive 
immune system factors.2 The most frequently described mutations 
involve variations in the filaggrin (FLG) genes, influencing inter-
mediate filament protein filaggrin expression.  More common in 
certain regional populations than others, FLG gene mutations are 
found in 10%-50% of individuals with AD worldwide.3 Variations 
in functional FLG gene copy numbers may modulate AD develop-
ment and severity. Relative to AD patients with heterozygous FLG 
mutations, patients with homozygous FLG loss of function muta-
tions present with greater frequency of early onset recalcitrant AD, 
associated atopic diseases (asthma and/or food allergies), and cu-
taneous superinfections.4 Further supporting the role of skin barrier 
defects in the pathogenesis of AD, several additional barrier genes 
encoded by the epidermal differentiation complex (EDC) locus 
on chromosome 1q21, including claudins, loricrin (LOR), invo-
lucrin (IVL), SPINK5, and TMEM79/MATT, are also associated 
with AD.5,6 Mutations in innate immune system genes identified 
in association with AD include NOD1, NOD2, TLR2, CD14, and 
DEFB1, encoding integral factors in the cutaneous immunologic 
response to nonspecific antigens. Adaptive immunity gene muta-
tions implicated in AD pathogenesis, such as IL-4, IL-4RA, IL-13, 
thymic stromal lymphopoietin (TSLP), IL-31, and CCR5, encode 
Th2 cytokines and chemokines.7

“Inside-out” versus “outside-in” 
Whether AD is primarily driven by immune abnormalities (“in-
side-out” theory) or epidermal barrier dysfunction (“outside-in” 
theory) has been highly controversial. The “outside-in” model 
postulates that inherent defects in barrier function and keratino-
cyte differentiation allow penetration of antigens with consequent 
immune sensitization and activation. In contrast, the “inside-out” 
model proposes that activation of Th2 cells and the resulting im-
munologic cascade result in the AD phenotype.8-10 It is clear that 
AD pathogenesis is multifactorial and, despite lack of full etiologic 
understanding, results from a complex interaction between epider-
mal barrier dysfunction, environment, and immune dysregulation. 
Nevertheless, regardless of what the first culprit is, it is clear that 
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the disease phenotype and its chronic nature predominantly related 
to immune abnormalities, further contribute to the epidermal ab-
normalities, and these are now targeted through specific treatments 
that are currently developed for AD.

Epithelial cutaneous barrier dysfunction:
Both affected and unaffected skin of AD patients demonstrates vast 
suppression of structural proteins and lipids of the superficial stra-
tums of the epidermis that are essential to barrier function and water 
retention.11 The insoluble cornified envelope in the stratum corneum 
encapsulates keratin proteins and is composed of disulfide and gamma-
glutamyl-lysine bonded, cross-linked structural proteins (including 
loricrin, involucrin, and small proline-rich proteins) and a surround-
ing continuous, neutral lipid layer (including ceramides, cholesterol, 
and free fatty acids).11 Additional protective barrier mechanisms (tight 
junctions) are positioned deeper in the stratum granulosum of the epi-
dermis. In particular, claudins are tight junctions that form an insolu-
ble barrier, and are downregulated in AD patients.5,12 

 During the final process of terminal differentiation, FLG helps 
to maintain skin cell integrity and barrier function through aggre-
gating keratin filaments by preventing water loss and blocking the 
entrance of foreign substances. In addition, its amino acid break-
down products, pyrrolidone carboxylic acid and urocanic acid, 
promote skin hydration and provide ultraviolet protection. These 
acids also modulate immune function directly by lowering skin 
pH, and preventing the activation of serine proteases and the sub-
sequent growth of bacteria.3,11 Lack of FLG breakdown products is 
directly linked to transepidermal water loss, bacterial skin coloni-
zation with Staphylococcus aureus, and allergen penetration,3 elu-
cidating the association of FLG mutations with more severe atopic 
dermatitis and additional atopic conditions.  

Skin barrier defects increase trans-epidermal water loss (TEWL) 
in AD skin. Therefore, climatic changes in environmental humid-
ity and temperature may adversely affect AD patients. It is well 
recognized in the literature that radiant home heating, which is 
associated with decreasing environmental humidity, is a strong 
risk factor for AD flares. Furthermore, clinical investigations have 
collectively revealed that low temperature and low humidity tem-
perate climates hinder skin barrier function and promote pro-in-
flammatory cytokine and mast cell reactivity within the skin.10,13,14 
Among a cohort of 177 Korean pediatric patients, a 5°C increase 
in outdoor temperature and a 5% increase in outdoor humidity was 
associated with a 12.8% and 3.3% decrease in AD symptoms re-
spectively.14 This suggests that meteorological variables, including 
cold and dry weather, may increase the frequency and risk of flares 
in AD patients.

The epidermal barrier defects in AD further allow allergens 
or microbial pathogens to penetrate AD skin, promoting allergic 
sensitization and infections. Mice with FLG mutations, exhibit 
increased penetration of allergens and irritants relative to unaf-
fected controls.15 This incites AD cutaneous inflammation through 
various mechanisms, including production of specific IgE and im-
munostimulatory cytokines, activation of basophils, and cytotoxic 
effects of bacterial toxins. 

Microbiome and atopic dermatitis
Abnormalities in cutaneous microbial colonization may play an 
integral role in AD pathogenesis. Normal skin is colonized with 

billions of diverse commensal bacteria responsible for augment-
ing skin defenses against infectious agents, through the production 
of antimicrobial peptides. The main antimicrobial peptides in the 
skin, defensins and cathelicidins, both modulate immunity against 
microbial pathogens directly and through their immunostimula-
tory effects.16 Deficiencies in these antimicrobial peptides (AMPs) 
in AD patients are extensively documented in the literature.16,17 In 
addition to the lack of antimicrobial peptides in the skin, a loss 
of cutaneous microbial diversity of commensal skin bacteria dur-
ing AD exacerbations relative to well controlled patients has been 
revealed.18 Microbial diversity is subsequently reestablished fol-
lowing clinical improvement with topical anti-inflammatory man-
agement.18 Taken together, these clinical findings suggest the skin 
microbiome may contribute to the severity of AD.           

A lack of these commensal skin bacteria, including S. epider-
mis and other coagulase-negative staphylococci, may further lead 
to abnormal proliferation of S. aureus. The routine utilization of 
topical antibiotics in AD management may also decrease commen-
sal bacteria, promoting S. aureus colonization.19 In AD patients, 
colonization with S. aureus and the subsequent action of exotoxins 
may worsen symptoms through inducing the proliferation of im-
munomodulatory and inflammatory cytokines (IL-31 and IL-22) 
and T cells.15,19 S. aureus also modulates barrier function, through 
the increased production of serine proteases known to damage the 
epidermal barrier.20 In turn, IL-4, IL-13 and IL-22 were shown to 
promote S. aureus colonization.

Immune-mediated abnormalities
In AD skin, mechanical injury, allergens, and microbes trigger the 
skin’s innate immune system inciting increased expression of in-
flammatory cytokines, especially TSLP, IL-25, and IL-33. TSLP 
especially is expressed in high quantities in AD lesions, and serves 
a critical role in activating the Th2 cascade. TSLP, IL-25, and IL-
33 collectively trigger the innate lymphoid cell-2 (ILC-2) acti-
vation of Th2 cells, IL-5, and IL-13. ILCs are non-T and non-B 
effectors cells that trigger specific cytokines as above.4 The ILCs 
also express skin-homing receptors, and are activated by IL-33, 
infiltrating human skin after allergen stimulation.4 

Antigens are processed directly by Langerhans’ cells (LC) and 
inflammatory dendritic epidermal cells (IDEC) and subsequently 
presented to Th2 cells. LC, myeloid dendritic cells (DCs), and 
IDECs in AD also produce chemokines, such as CCL17, CCL18, 
and CCL22, which further attract additional Th2 cells. Although 
IDECs were initially thought to be localized to the epidermis, their 
immune-activating effects have been demonstrated in the dermis. 
They secrete proinflammatory chemokines, including CCL17, 
CCL18, and CCL22, which are associated with amplification of 
Th2 responses. These chemokines intensify Th2 and Th22 cyto-
kines, including IL-4, IL-13, IL-31, and IL-22, which in turn have 
been shown to to downregulate terminal differentiation and tight 
junction proteins, such as FLG, LOR, PPL, and claudins.4 

IL-4 and IL-13 are critical to the activation and perpetuation 
of Th2 T cells and downstream molecules. Exerting their effects 
on IL-4R alpha, expressed on B cells, T cells, macrophages, and 
other immune cells, these cytokines also modulate IgE level class 
switching in B cells and subsequent eosinophil expression.21 In 
conjunction with Th2 polarization, which facilitates the binding 
of S. aureus, IL-4 and IL-13 predispose AD patients to S. aureus 
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infection by inhibiting the production of AMPs in the cutaneous 
surface.22 

 IL-4 and IL-13 further modulate AD by inhibiting the expres-
sion of epidermal barrier proteins that are important in terminal 
differentiation and barrier function. Keratinocyte differentiated in 
the presence of IL-4 and IL-13 demonstrated considerably reduced 
expression of FLG gene, even in individuals with previously func-
tional FLG genes.23 Loricrin and involucrin expression are also 
decreased by IL-4 and IL-13 in both lesional and nonlesional skin 
of AD patients, further disrupting the cutaneous barrier.24 Recent 
therapeutic advances directly targeting and inhibiting the signal-
ing of IL-4 and IL-13 using dupilumab, a monoclonal antibody 
targeting IL-4R alpha, inhibiting IL-4 and IL-13 signaling, have 
demonstrated clear efficacy in clinical trials of moderate to severe 
AD patients.25 These data were also extended to skin biopsies of 
AD lesions from patients with moderate to severe AD treated with 
dupilumab, which showed that the clinical disease improvement 
was coupled with molecular reversal of AD in skin tissues, pro-
viding a final proof for the pathogenic role of IL-4 and IL-13 in 
AD. Th2 cells also produce the itch associated cytokine, IL-31, 
which participates in the itch-scratch cycle along with several oth-
er important mediators, including histamine, TSLP, tryptase, and 
neuropeptides. Large increases in IL-31 have been demonstrated 
in acute lesions, and in direct relation to disease severity in some 
investigations.25-28

“Th22 cells” and associated cytokine, IL-22 are also implicated 
in inhibiting epidermal barrier function and have recently been 
linked to epidermal hyperplasia.29 

AD is also characterized by peripheral eosinophilia, with vari-
ability in the number of eosinophils in the skin.4 IL-5 is the cyto-
kine largely responsible for eosinophil recruitment and is typically 
present in lesional skin. Interestingly, a monoclonal antagonist 
against IL-5 did not show improvement in AD clinical severity, 
although overall peripheral eosinophila was reduced, in a short 2- 
week study.4 Thus, current research studies have shifted focus to 
IL-4,/IL-13 antagonism given the predominant role of these cyto-
kines in AD skin.4 

Although it is well recognized that the acute phase of AD is 
characterized by a strong modulation of Th2 and Th22 immune 
responses, clinical investigations have revealed other pathways, 
including Th17/IL-17 and IL-23, that further contribute to disease 
pathology.4 Th17 cells, a vital mediator of psoriasis, produce IL-17 
and, to a lesser extent IL-22, which both regulate AMP S100A7 
(psoriasin) production in keratinocyte.30 IL-17 also induces the 
production of other inflammatory mediators, contributing to an 
influx of neutrophils, T-cells, and DC chemokines.30 IL-23, a key 
modulatory cytokine in the production and differentiation of Th17 
cells, also induces Th22 differentiation, perhaps explaining its role 
in AD. The IL-23 receptor is expressed on immune cells, including 
LCs, DCs, and Th17 cells, and is upregulated in AD skin relative to 
normal skin.31 In fact, the levels of IL-23 cytokine subunits in AD 
are similar to psoriasis. Given the success of IL-23 antagonism in 
psoriasis,32 such a treatment approach may be useful in AD. This 
remains to be validated in future clinical trials.

Most recently, clinical investigations involving mice reveal that 
Th17 may propagate the production and development of IL-4.33 
Relative to the Th17 skewing of psoriasis, AD skin demonstrates 
decreased IL-17/IL-23 production,31 perhaps providing a potential 

explanation for the increased infection rate in AD patients, given 
the known IL-17 regulation of AMP.30  IL-4 and IL-13 reportedly 
decrease the production of IL-17 cytokines,12 explaining the de-
creased Th17 response in AD patients.34,35 Despite the ground-
breaking advances in psoriasis therapeutics targeting the Th17 
pathways, the role of Th17 cells in AD is not fully understood.  

While acute AD pathogenesis is polarized towards Th2 and 
Th22 immune responses, chronic AD lesions additionally exhibit a 
substantial Th1 component.4,35-37 The Th1 inflammatory cascade is 
characterized by the influx of numerous cytokines, including Inter-
feron (IFN) gamma, and IL-12. The defining cytokine of the Th1 
pathway, IFN gamma, promotes an intensified cutaneous inflam-
matory response and keratinocyte apoptosis.38 IL-12 amplifies this 
inflammatory process, triggering the proliferation of additional 
IFN gamma, T cells, and NK cells.39

Conclusion 
The pathogenesis of AD is complex and multifactorial, and results 
from a complex interaction between genetic and environmental 
factors, leading to an epithelial barrier-immune interplay. Our un-
derstanding of AD is currently being transformed by molecular 
medicine and therapeutic advances. Further advances are under-
way that will hopefully continue to shape AD understanding and 
management in the future.  
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